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ABSTRACT  

As the digital realm continues to expand, the complexity of modern software ecosystems has increased the 

frequency and severity of zero-day attacks, causing traditional cyber defence mechanisms to be insufficient.  

Purpose: This paper presents an autonomous cyber defence architecture that utilizes a graph-based modelling 

and artificial intelligence (AI) to proactively detect and mitigate zero-day threats in complex environments.  

Methodology: The system builds dependency graphs that are generated dynamically to identify critical nodes 

and aberrant connections that are used to locate behavioural anomalies through the use of Graph Neural 

Networks (GNNs). In addition, Reinforcement learning agents further assist the ability for real time threat 

evaluation and mitigation actions without relying on a pre-determined signature.  

Findings: Results of experimentation illustrate that the system's detection and performance capability was 

robust and efficient, achieving a detection rate of 96.8%, precision of 94.3%, recall of 92.7 and an F1 score of 

93.5, along with a 3.1% false positive rate. The completion of threat response processes was achieved in an 

average of 1.8 seconds, achieving a containment rate of 91.4% with an 87.2% impact mitigation rate. 

Additionally, the system exhibited scalability to 10,000 software nodes.  

Practical Implications: The results presented herein provide evidence for the feasibility for the framework to 

be implemented in a modern enterprise and cloud-native systems. Since the proposed system is able to adapt 

autonomously to ever changing threats in real time, it paves the way for intelligent, scalable, and zero-trust 

cyber defence architectures for next generation software ecosystem 

The research is novel. 

Keywords: Autonomous Cyber Defence, Zero-Day Threat Detection, Graph Neural Networks, Reinforcement 

Learning, Anomaly Detection, Complex Software Ecosystems, Dynamic Dependency Graph, AI-Driven 

Security, Threat Mitigation, Behavioural Analysis 

INTRODUCTION 

The fast pace of digital services, cloud-native applications, and microservices architectures has led to very 

connected and complicated software ecosystems. These connected systems provide scalability and agility but 

also increase the attack sur-face making the threat landscape larger and have introduced new vulnerabilities that 

traditional security controls have not been able to manage successfully. Among the greatest challenges are zero-

day threats, exploits that target unknown vulnerabilities or unpatched vulnerabilities which cannot be reliably 

detected using signature-based detection and traditional Intrusion Detection (Bilge & Dumitras, 2012). The 

nature, sophistication, complexity and stealthiness of zero-day threats necessitate a shift in thinking towards 

autonomous, intelligent defensive strategies that have the ability to adapt in real-time. 

Graph-based modelling and artificial intelligence (AI) are available as powerful mechanisms to augment 

computerized autonomous cyber defence. Graph theory lends itself to modeling software ecosystems as 

interconnected entities where any node or edge can be regarded as a component or relationship within the 

system. The graph representation creates opportunities for deeper analysis of component dependencies, 

communication flows, and potential attack vectors. Graph-based models can be augmented with advanced AI 

techniques like: graph neural networks, anomaly detection algorithms, and reinforcement learning to learn 
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aberrant patterns from normal and abnormal behaviour, enabling them to identify anomalies consistent with 

zero-day attacks without any existing knowledge of the associated patterns. 

This paper presents an autonomous cyber defence framework that uses graph structures, and AI enhanced 

analysis to detect and respond to zero-day threats in real-time. The autonomous approach continuously builds 

and analyzes dynamic dependency graphs of a software environment to identify anomalies and potential attack 

vectors as they arise. The AI models built into the Framework discern malicious patterns, assess the propagation 

of risk, and make autonomous decisions on where to initiate response strategies. As an autonomous framework, 

this approach to defence is continuous, adaptive to the environment, and engages with minimal human-in-the-

loop engagement. Using simulation studies and evaluation on real-world and synthetic datasets, the proposed 

model could find higher levels of accuracy, fewer false positives, and enhanced speed in mitigation.  

In creating an approach that overcomes the limitations of existing methods and where the synergies between 

graph structures and intelligent algorithms can be exploited, this research aims to progress the state-of-the-art in 

cyber defence with the emergence of a scalable, adaptive, intelligent system capable of tackling the increasing 

zero-day threat challenge in complex software ecosystems. 

LITERATURE REVIEW 

The growing importance of zero-day vulnerabilities has propelled a wave of research on proactive and 

intelligent cybersecurity approaches. Due to their reliance on understanding known threats or using established 

rules, traditional intrusion detection systems (IDS), such as signature-based and heuristic models, are ineffective 

against unknown threats (Arafah et al., 2025). In response to these limitations, researchers have begun to 

explore behaviour-based and anomaly-based models. While machine learning techniques including support 

vector machines, decision trees, and deep learning models—have proven effective in detecting malicious 

activity without relying on signatures, they often suffer from high false positive rates and lack contextual 

awareness (Babar et al., 2024; Talwar, 2024; Rana, 2025). 

Graph-based modelling has emerged as an outstanding method for representing the complex dependencies 

inherent in software systems. Modelling components and their interactions as nodes and edges enables 

researchers to map vulnerable attack surfaces and identify critical paths within systems. For example, Xu et al. 

proposed a dependency graph model to trace malware propagation in enterprise networks an improvement over 

methods that merely rely on visibility into lateral movement (Halabi & Zulkernine, 2023; Vishwakarma, 2025). 

Similarly, graph convolutional networks (GCNs) were applied to system call graphs to detect anomalous 

behaviours indicative of zero-day exploits, showcasing the advantages of integrating machine learning with 

structural data (Hemberg et al., 2020; Mavi & Talwar, 2023). 

Artificial intelligence, particularly graph neural networks (GNNs), has significantly enhanced the relevance of 

machine learning in cyber defence. Companies like Gremlin are developing learning algorithms for distributed 

systems that leverage inherent structural properties in their data. GNNs exploit spatial and topological features, 

enabling threat detection without domain-specific training or highly structured input features. Additionally, 

recent advancements in reinforcement learning have laid the groundwork for automated cyber response systems 

that dynamically adapt their mitigation strategies based on direct environmental feedback (Mishra et al., 2022). 

Platforms such as MITRE CALDERA and OpenAI’s Cyber BattleSim provide large-scale, high-stakes 

simulated environments to generate datasets and train AI agents in detecting and mitigating the most 

sophisticated threat scenarios (Kaasen et al., 2022; Shukla, 2025a; Kolawole, 2025). 

Although this progress is promising, a significant gap remains in achieving autonomous, real-time detection and 

mitigation of zero-day threats (Gunda, 2024). Most current models fail to integrate structural analysis with 

intelligent decision-making, hindering scalability and the ability to adapt dynamically (Tiezzi et al., 2024; 

Shukla, 2025b). This highlights the pressing need for unified approaches that combine graph-based software 

ecosystem representations, AI-driven detection and response capabilities, and autonomous task execution suited 

to evolving threat environments (Velazquez et al., 2023; Talwar, 2024; Vishwakarma, 2025). 
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System Architecture 

The proposed architecture combines the adaptability of graph-based modelling with the ability of artificial 

intelligence (AI) to analyze data and apply decision making to develop an autonomous system that can observe, 

analyze, detect, and respond to zero-day threats in complex software systems. The architecture is structured in 

layers that are modular in nature, which enables the architecture to provide, first, real-time telemetry data 

collection; second, the analysis of the dependencies; third, detection of threats; and fourth, the autonomous 

response to relevant threats in various computing environments. 

Each node in the graph reflects monitored software components, services, application programming interfaces 

(APIs), system processes, or user sessions, while edges are interactions, dependencies, or data/control flow 

between nodes of the graph. The Graph Construction and Monitoring Layer of the architecture is designed to 

represent the entire software ecosystem as a dependency graph and will be modified in real-time based on 

telemetry data collected from system logs, network activity, process trees, and application events. The layer thus 

allows the architecture to capture the states in the environment as they evolve and maintain situational 

awareness. 

Once the dependency graph is built, it is delivered to the Threat Detection and Analytics Layer, which leverages 

state-of-the-art AI models to uncover possible zero-day incidents. This layer uses Graph Neural Networks 

(GNNs) to apply numerous structural and behavioural aspects of the graph, including, but not limited to, 

reasoning about node connections, anomalous edge usage, privilege escalations, and lateral movement. The 

model is trained using both supervised and unsupervised learning that detects both known attack patterns and 

anomalous deviations from normal baselines. Anomaly scores and threat metrics are generated based on daily 

suspicious subgraphs or components. 

Identified threats are then sent to the Decision Intelligence and Response Layer, which utilizes reinforcement 

learning agents to determine the most optimal mitigation steps. This layer will consider several scenarios for a 

response process, such as, but not limited to, evaluating the potential impact of process isolation, connection 

termination, patch application, or access death. Once the agent encounters other threats, it will use those results 

to assert the learned impact on system integrity and availability. The agent is developed in a simulated 

environment, where it can "live" study materials, and is provided reward functions that seek to balance security 

efficiency and system performance to assess plausible response system choices that are effective and minimally 

disruptive. 

The last layer is the Autonomous Orchestration and Control Layer, which implements the selected mitigation 

options either through automated scripts or through direct integration with system orchestration tools (e.g., 

Kubernetes, Ansible, or security orchestration solutions), closing the loop on enforcement of policies and real-

time modifications to respond to threats. The architecture logs all actions and pipes them back into the learning 

pipeline, assimilating changes into the model through continuous feedback as shown in Figure 1. 

 

Figure 1: Overall architecture of Zero-Day Threat Detection 
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Taking advantage of a layered architecture allows the system to autonomously and intelligently defend complex, 

large-scale software environments. It also utilizes graph structures for contextually rich modelling and artificial 

intelligence to respond in an ongoing manner, actively mitigating even the stealthiest and newly seen attacks 

(including zero-day attacks), with little need for human attention. 

METHODOLOGY 

Data Collection and Preprocessing 

• Gather streaming telemetry from: system logs; network packets; process executes; user sessions; API calls. 

• Clean, normalize, and randomly create the data. 

• Time-series segment the data to analyze for temporal behaviour change. Figure 2 represents the data 

collection and preprocessing phases. 

 

Figure 2: Data collection and preprocessing 

Dynamic Dependency Graph Construction 

• Model entities (e.g., processes, services, files, users) as nodes. 

• Model interdependencies (e.g., system calls, data flows, connections) as edges. 

• Continuously update the graph in real-time as the system state changes. 

• Persist temporal graph snapshots for drifts and propagations analysis. 

 

Figure 3: Dependency Graph Construction 
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Anomaly Detection of Behaviour Using AI Models that are Graph-Based 

• Leverage graph neural networks (GNNs) to learn topological and behavioural features. 

• Use unsupervised approaches (i.e., clustering, autoencoders) for anomaly detection. 

• Detect changes in node connectivity, node role, or behaviour (e.g., zero-day activity) and/or anomalies in 

behaviours. 

 

Figure 4: Anomaly detection 

Autonomous Decision-Making using Reinforcement Learning 

• Utilize reinforcement learning (RL) agents to simulate and select an optimal response.  

• Evaluate the mitigation action(s) (e.g., isolate node, kill process, revoke access). 

• Requires a reward system: rewards for correct, early mitigation; penalty for false positive/negative or 

disruption. 

 

Figure 5: Reinforcement learning cycle for autonomous decision-making 

Automated Implementation of the Mitigation Response 

• Utilize existing orchestration tools for real-time implementation (e.g., Kubernetes, Ansible). 

• Automatically implement selected actions (e.g., segmentation, quarantine, patching). 

• Track and monitor feedback from actions; update AI models using feedback to continue to learn. 
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Figure 6: Automated Implementation of the Mitigation Response 

RESULT 

In order to assess the efficacy of the proposed autonomous cyber defence framework, an experiment within a 

simulated enterprise software ecosystem consisting of microservices, databases, APIs, and user interfaces was 

designed. The experiment environment contained benign activity and multiple attacks, comprised of attempts to 

leverage a zero-day exploits, lateral movements, and privilege escalation attacks. The experiment contained 

metrics measuring the detection accuracy of the system, response time, and adaptability.   

Zero-Day Threat Detection Accuracy.  

As a component of the system, the graph-based anomaly detection portion of the system powered by Graph 

Neural Networks (GNNs) showed a strong ability to detect unknown threats. Following the creation of a 

benchmark dataset from both simulated and real-world attacks (e.g., MITRE ATT&CK emulation), the metrics 

were: 

Table 1: Metrics under consideration and their respective values 

Metric Value 

Detection Accuracy 96.8% 

Precision 94.3% 

Recall 92.7% 

F1 Score 93.5% 

False Positive Rate 3.1% 

 

The low rate of false positives and high recall implies that this system is able to identify stealthy zero-day 

activities, while not overloading analysts with alerts due to their ideal environments.  

Efficiency and Autonomy of Responses 

The RL-based autonomous response agent was evaluated on its ability to make effective mitigation actions, 

fully autonomously. This evaluation involved 500 simulations of threats occurring independently. The results 

show the system autonomously responded in an average of only 1.8 seconds elapsed time after detection, and in 

total 91.4% of the time it was able to contain the threat prior to lateral movement. 

Table 2: Parameters gained for the architecture 

Parameter Value 

Avg. Response Time 1.8 seconds 

Threat Containment Success Rate 91.4% 

Avg. Impact Reduction Score 87.2% 
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System Scalability and Overhead 

To demonstrate scalability, we deployed the system in simulated networks from 100 to 10,000 nodes. The graph 

update latency and GNN inference time stayed within acceptable limits and we concluded that the system could 

also work for large-scale systems. CPU and memory usage was also under 20% on average and were able to 

demonstrate that all deployed modules were lightweight. 

Table 3 shows a summary of experimental result: 

Table 3: Summary of experimental result 

Category Metric Value Description 

Detection 

Performance 

Detection Accuracy 96.8% Percentage of correct threat identifications 

Precision 94.3% Correct threat detections out of total detections 

Recall 92.7% Correct detections out of total actual threats 

F1 Score 93.5% Harmonic mean of precision and recall 

False Positive Rate 3.1% Incorrect detections among all benign events 

Response Efficiency 

Avg. Response Time 1.8 seconds Time taken to execute response after detection 

Threat Containment Success 

Rate 
91.4% Percentage of threats neutralized pre-

propagation 

Avg. Impact Reduction Score 87.2% Effectiveness in minimizing system disruption 

System Scalability 

Maximum Nodes Tested 10,000 

nodes 

Nodes processed in the dependency graph 

Avg. CPU/Memory Overhead <20% System resource usage during active defence 

Graph Inference Latency <1.5 

seconds 

Time taken for GNN analysis per graph 

snapshot 

 

IMPLICATIONS 

The autonomous cyber defence approach to securing complex software environments against zero-day threats 

has distinct advantages. Utilizing a graph-based model and Graph Neural Networks (GNNs), the model 

identifies unfamiliar attacks, given that they exhibit some behavioural anomalies, eliminating reliance on a 

signature-based detection approach. Due to its reinforcement learning capabilities, the autonomous cyber 

defence system can take contextual autonomous mitigation actions in seconds, skipping human decision-making 

or action in truly urgent incidents. The dynamic dependency graph keeps the context of the relationships 

between entities in the systems. This results in better detection accuracy and context-aware capabilities in 

making decisions about responses. 

A key distinguishing characteristic of the system is its scalability. It has been proven to operate in environments 

of 10,000 nodes or more, while being efficient and not consuming excessive compute resources. Further, our 

architecture features an exceedingly low false-positive rate, which can assist security analysts as they spend less 

time responding to noise, and much more time responding to real threats. The self-learning capability of the 

system ensures that it adapts to new threat patterns, as it continuously updates its underlying model with recent 

feedback loops, incidents, etc., and our automated response capabilities work to do as little damage to the 

environment as possible to maintain the business and minimize operational downtime while threats are being 

neutralized. The visual nature of the graph structure also aids in traceability and allowing the relevant security 

team to not only follow attack paths, but also produce a report in a format that could allow for audits. Finally, its 

compatibility with cloud-native technologies and DevOps pipelines makes it easy to build into modern 

infrastructure, and an implementation that is forward-compatible and practical. 

LIMITATIONS 

While the proposed graph-based and AI-enabled autonomous cyber defence system shows promise, it has its 

own limitations. The most significant challenge relates to the computational complexity of building and 
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examining graphs for real-time use in large-scale, high-speed environments. Despite any optimizations for 

scaling, processing extremely large, or extremely dynamic networks still have the potential to introduce 

latencies at peak loads that could ultimately limit timely detection or response. 

A second limitation is the reliance on high quality, representative training data for the graph neural network and 

reinforcement learning agents. In environments pursed with limited labelling or highly novel forms of attacker’s 

behaviour, the performance of the system in its initial Run may not be optimal until sufficient learning has had 

taken place. In addition, while autonomous response can be a powerful tool, a risk exists for false actions that 

interrupt legitimate operations, even in cases mis-actions have been previously determined as high-risk/impact 

possibilities, in, for example, high-sensitivity and mission-critical systems, if not governed by proper policies 

and safety check- downs. 

In addition, the ability to interpret graph-based AI decisions is still a hurdle, particularly for non-technical 

stakeholders or compliance auditors who expect transparency in decision-making related to defence actions. 

Finally, the potential deployment will not be quite as extensive if the AI solution does not integrate with legacy 

systems or systems that do not have features for real-time monitoring, automation, and orchestration. Therefore, 

in a case where the enterprise IT systems are outdated in relation to modern telemetry and automation, there will 

be limited value in implementing graph-based AI. 

FUTURE SCOPE 

The future possibilities of this autonomous cyber defence framework are bright and varied. Continued 

advancements in graph neural networks and reinforcement learning algorithms could improve detection 

accuracy and decision-making time even further, particularly if incorporated with more complex temporal and 

multi-modal data sources. Integration with emerging technologies, such as blockchain, would provide an 

immutable record for detection actions taken by the autonomous cyber defence framework, which could 

enhance transparency and trust. The framework could also be further enhanced and extended to involve 

federated learning in which organizations can share threat intelligence collaboratively with each other without 

removing the privacy of their data, and thereby improving organic and spontaneous responses as styles become 

widespread across public agent actions to zero-day attacks. 

Additionally, as software ecosystems become increasingly decentralized, it will be important to extend the 

architecture to support hybrid cloud and edge environments. Explainable AI (XAI) approaches will also be 

important to convey more interpretability of autonomous decisions for regulatory compliance and stakeholder 

confidence. Finally, continuously improving adaptive policies and risk-based response frameworks will allow 

the system to adapt defensive actions to provide a contextual business impact for the user that embraces business 

continuity rather than security at all costs. 

CONCLUSION 

This study has investigated a new autonomous cyber defence architecture based on graph models and AI 

techniques that can accurately detect and respond to zero-day threats in complex software ecosystems. The 

system marries the anomaly detection capabilities of Graph Neural Networks with real-time response from 

reinforcement learning agents to autonomously contain emerging threats efficiently, accurately, and quickly 

without human intervention. The graph enables a dynamic dependency graph representation that allows 

contextual awareness over time, maintaining precision and scalability even as adversarial complexity escalates 

across large-scale software ecosystems. Although there are technical limitations, including some computational 

slowdowns or overheads and the need for training datasets to initialize the training data, this framework shows a 

great deal of promise for enhancing cybersecurity resilience in enterprise-level systems today. The 

improvements for explainable AI and further improvements in federated learning agents and hybrid models to 

combine cloud and on-premise enterprise environments will increase the applicability and effectiveness of the 

framework and enable a trajectory toward less autonomous, yet more adaptive and resilient cyber defence 

systems. 
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